Xét dấu của tam thức bậc hai sau:
a) f(x) = 2x2 – 3x – 2;
b) g(x) = - x2 + 2x – 3.
a) Tam thức f(x) = 2x2 – 3x – 2 có ∆ = (-3)2 – 4.2.(-2) = 9 + 16 = 25 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = và x2 = 2 và a = 2 > 0.
Ta có bảng xét dấu sau:
Dựa vào bảng xét dấu ta thấy f(x) âm trong khoảng và dương trong hai khoảng và (2; +∞).
Vậy với x ∈ thì f(x) < 0 và x ∈ hoặc x ∈ (2; +∞) thì f(x) > 0.
b) Tam thức g(x) = - x2 + 2x – 3 có ∆ = 22 – 4.(-1).(-3) = 4 – 12 = - 8 < 0. Do đó g(x) vô nghiệm và a = -1 < 0.
Ta có bảng xét dấu sau:
Dựa vào bảng xét dấu ta thấy g(x) âm với mọi giá trị thực của x.
Vậy g(x) < 0 với mọi x ∈ ℝ.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247