Xét dấu tam thức bậc hai h(x) = -0,006x2 + 1,2x – 30 trong bài toán khởi động và cho biết ở khoảng cách nào tính từ đầu cầu O thì vòm cầu: cao hơn mặt cầu, thấp hơn mặt cầu.
Ta có h(x) = -0,006x2 + 1,2x – 30 là tam thức bậc hai. h(x) có ∆ = 1,22 – 4.(-0,006).(-30) = 0,72 > 0. Do đó tam thức có hai nghiệm phân biệt là x1 ≈ 170,7 và x2 ≈ 29,3 và a = - 0,006 < 0.
Ta có bảng xét dấu f(x) như sau:
Từ bảng xét dấu ta thấy f(x) dương trong khoảng (29,3; 170,7) và âm trong hai khoảng (-∞; 29,3) và (170,7; +∞).
Kết hợp với điều kiện 0 ≤ x ≤ 200 thì f(x) dương khi x ∈ (29,3; 170,7) và f(x) âm khi x ∈ [0; 29,3) và (170,7; 200].
Vậy với giá trị của x ∈ (29,3; 170,7) thì vòm cầu cao hơn mặt cầu, với giá trị của x nằm trong hai khoảng (-∞; 29,3) và (170,7; +∞) thì vòm cầu thấp hơn mặt cầu.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247