Một khung dây thép hình chữ nhật có chiều dài 20 cm và chiều rộng 15 cm được uốn lại thành khung hình chữ nhật mới có kích thước (20 + x) cm và (15 – x) cm. Với x nằm trong các khoảng nào thì diện tích của khung sau khi uốn: tăng lên, không thay đổi, giảm đi?
Diện tích khung dây thép hình chữ nhật ban đầu là: 20.15 = 300 (cm2).
Diện tích khung hình chữ nhật mới là: (20 + x)(15 – x) = 300 + 5x – x2 (cm2).
Xét hiệu f(x) = 300 – 300 – 5x + x2 = x2 – 5x.
Ta có f(x) = x2 – 35x là tam thức bậc hai có ∆ = (-35)2 – 4.1.0 = 1 225 > 0. Do đó h(x) có hai nghiệm phân biệt x1 = 0, x2 = -5 và a = 1 > 0.
Khi đó ta có bảng xét dấu:
Suy ra f(x) âm khi x thuộc khoảng (-5; 0), f(x) dương khi x thuộc hai khoảng (-∞; -5) và (0; +∞).
Vậy với x thuộc khoảng (-5; 0) thì diện tích của khung dây thép tăng lên, x thuộc hai khoảng (-∞; -5) và (0; +∞) thì diện tích của khung dây thép giảm đi, và x = - 5 hoặc x = 0 thì diện tích khung dây thép không đổi.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247