Giải các bất phương trình bậc hai sau:
a) 15x2 + 7x – 2 ≤ 0;
b) – 2x2 + x – 3 < 0.
a) Xét tam thức bậc hai f(x) = 15x2 + 7x – 2 có ∆ = 72 – 4.(-2).15 = 169 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = , x2 = và a = 15 > 0.
Suy ra f(x) nhỏ hơn hoặc bằng 0 khi x thuộc khoảng .
Vậy bất phương trình 15x2 + 7x – 2 ≤ 0 có tập nghiệm là S = .
b) Xét tam thức bậc hai g(x) = – 2x2 + x – 3 có ∆ = 12 – 4.(-2).(-3) = -23 < 0 và a = -2. Do đó g(x) vô nghiệm.
Suy ra g(x) luôn âm với mọi x ∈ ℝ.
Vậy bất phương trình – 2x2 + x – 3 < 0 có tập nghiệm S = ℝ.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247