Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các

Câu hỏi :

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các bất phương trinh bậc hai sau đây:

a) x2 + 2,5x – 1,5 ≤ 0;

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 1)

b) – x2 – 8x – 16 < 0

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 2)

c) – 2x2 + 11x – 12 > 0

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 3)

d) 12x2 + 12 x + 1 ≤ 0

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 4)

* Đáp án

* Hướng dẫn giải

a) 

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 5)

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 6)

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 7)

b)

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 8)

Dựa vào hình vẽ ta thấy:

Đồ thị hàm số f(x) cắt trục hoành tại một điểm có hoành độ x = -4 hay f(x) = 0 khi x = -4.

Với x ≠ -4 thì đồ thị hàm số f(x) nằm phía dưới trục hoành nên f(x) < 0 với x ≠ -4.

Vậy bất phương trình – x2 – 8x – 16 < 0 có tập nghiệm là S = ℝ\{-4}.

c)

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 9)

Dựa vào hình vẽ ta thấy:

Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt x1 = \(\frac{3}{2}\) và x2 = 4 hay f(x) = 0 khi x1 = \(\frac{3}{2}\) và x2 = 4.

Đồ thi hàm số f(x) nằm phía dưới trục hoành với x thuộc hai khoảng \(\left( { - \infty ;\frac{3}{2}} \right)\) và (4; +∞) hay f(x) < 0 với x thuộc \(\left( { - \infty ;\frac{3}{2}} \right)\) (4; +∞).

Đồ thị hàm số f(x) nằm phía trên trục hoành với x thuộc khoảng \(\left( {\frac{3}{2};4} \right)\) hay f(x) > 0 với x thuộc khoảng \(\left( {\frac{3}{2};4} \right)\).

Vậy bất phương trình – 2x2 + 11x – 12 > 0 có tập nghiệm S = \(\left( {\frac{3}{2};4} \right)\).

d)

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các  (ảnh 10)

Dựa vào hình vẽ ta thấy:

Đồ thi hàm số f(x) nằm phía trên trục hoành với mọi x hay f(x) > 0 với x ℝ.

Vậy bất phương trình \(\frac{1}{2}\)x2 + \(\frac{1}{2}\)x + 1 ≤ 0 có tập nghiệm S = \(\emptyset \).

Copyright © 2021 HOCTAP247