Mặt cắt ngang của mặt đường thường có dạng hình parabol để nước mưa dễ dàng thoáng

Câu hỏi :

Mặt cắt ngang của mặt đường thường có dạng hình parabol để nước mưa dễ dàng thoáng sang hai bên. Mặt cắt ngang của một con đường được mô tả bằng hàm số y = - 0,006x2 với gốc tọa độ đặt tại tim đường và đơn vị đo là mét như trong Hình 4. Với chiều rộng của đường như thế nào thì tim đường cao hơn lề đường không quá 15cm.

Mặt cắt ngang của mặt đường thường có dạng hình parabol để nước mưa dễ dàng thoáng  (ảnh 1)

* Đáp án

* Hướng dẫn giải

Gọi A, H, B lần lượt là các điểm trên hình vẽ:

Mặt cắt ngang của mặt đường thường có dạng hình parabol để nước mưa dễ dàng thoáng  (ảnh 2)

Đổi 15cm = 0,15 m

Để tim đường cao hơn lề đường không quá 15cm thì OH ≤ 0,15 hay – (– 0,006x2) ≤ 0,15

x2 – 25 ≥ 0

Xét tam thức bậc hai f(x) = x2 – 25 có ∆ = 02 – 4.(-25) = 100 > 0, a = 1 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = - 5 và x2 = 5.

Ta có bảng xét dấu:

Mặt cắt ngang của mặt đường thường có dạng hình parabol để nước mưa dễ dàng thoáng  (ảnh 3)

Suy ra f(x) không âm khi x thuộc đoạn [-5; 5].

Tương ứng x1, x2 lần lượt là hoành độ của các điểm A và B. Khi đó AB = |x2 – x1| = |5 – (-5)| = 10.

Vậy độ rộng của đường là 10 m thì tim đường cao hơn lề đường không quá 15cm.

Copyright © 2021 HOCTAP247