Cho tam giác OAB và OBC lấn lượt vuông tại A và B như Hình 1. Các cạnh AB và BC bằng nhau và ngắn hơn OB là 1cm. Hãy biểu diễn độ dài OC và OA qua OB, từ đó xác định OB để:
a) OC = 3OA;
b) OC = \(\frac{5}{4}\)OB.
Ta có OB = x (cm)
Khi đó AB = BC = x – 1 (cm). Do đó x > 1
Xét tam giác OBC vuông tại B, có:
OC2 = OB2 + BC2 (định lí Py – ta – go)
⇔ OC2 = x2 + (x – 1)2 = 2x2 – 2x + 1
⇔ OC = \(\sqrt {2{x^2} - 2x + 1} \)
Xét tam giác OAB vuông tại A, có:
OB2 = AB2 + OA2 (định lí Py – ta – go)
⇔ OA2 = AB2 – OB2
⇔ OA2 = x2 – (x – 1)2 = x2 – (x2 – 2x + 1) = 2x – 1
⇔ OA = \(\sqrt {2x - 1} \)
a) Vì OC = 3OA nên \(\sqrt {2{x^2} - 2x + 1} \) = 3\(\sqrt {2x - 1} \)
⇒ 2x2 – 2x + 1 = 9(2x – 1)
⇒ 2x2 – 2x + 1 = 18x – 9
⇒ 2x2 – 20x + 10 = 0
⇒ x2 – 10x + 5 = 0
⇒ x = 5 + 2\(\sqrt 5 \) hoặc x = 5 – 2\(\sqrt 5 \).
Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy cả hai giá trị của x đều là nghiệm của phương trình đã cho. Tuy nhiên x = 5 – 2\(\sqrt 5 \)(không thỏa mãn x > 1)
Vậy với x = 5 + 2\(\sqrt 5 \)(cm) thì OC = 3OA.
b) Vì OC = \(\frac{5}{4}\)OB nên \(\sqrt {2{x^2} - 2x + 1} \) = \(\frac{5}{4}\)x
⇒ 2x2 – 2x + 1 = \(\frac{{25}}{{16}}\)x2
⇒ 16(2x2 – 2x + 1) = 25x2
⇒ 7x2 – 32x + 16 = 0
⇒ x = 4 hoặc x = \(\frac{4}{7}\).
Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy cả hai giá trị của x đều là nghiệm của phương trình đã cho. Tuy nhiên x = \(\frac{4}{7}\) (không thỏa mãn x > 1)
Vậy với x = 4 (cm) thì OC = \(\frac{5}{4}\)OB.Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247