Lời giải phương trình \(\sqrt { - {x^2} + x + 1} = x\)như sau đúng hay sai?
\(\sqrt { - {x^2} + x + 1} = x\)
⇒ - x2 + x + 1 = x2 (bình phương cả hai vế để làm mất dấu căn)
⇒ - 2x2 + x + 1 = 0 (chuyển vế, rút gọn)
⇒ x = 1 hoặc x = \( - \frac{1}{2}\) (giải phương trình bậc hai)
Vậy phương trình đã cho có hai nghiệm là 1 và \( - \frac{1}{2}\).
Lời giải trên sai vì thiếu bước thử lại nghiệm dẫn đến kết luận nghiệm sai.
Lời giải đúng là:
\(\sqrt { - {x^2} + x + 1} = x\)
⇒ - x2 + x + 1 = x2 (bình phương cả hai vế để làm mất dấu căn)
⇒ - 2x2 + x + 1 = 0 (chuyển vế, rút gọn)
⇒ x = 1 hoặc x = \( - \frac{1}{2}\) (giải phương trình bậc hai)
Thay x = 1 và x = \( - \frac{1}{2}\) vào phương trình đã cho ta thấy chỉ có x = 1 là thỏa mãn.
Vậy phương trình đã cho có nghiệm là x = 1.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247