Giải các phương trình sau:
a) \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \);
b) \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\);
c) \(\sqrt {4{x^2} + x - 1} = x + 1\);
d) \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \).
a) \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \)
⇒ x2 – 7x = - 9x2 – 8x + 3
⇒ 10x2 + x – 3 = 0
⇒ x = \(\frac{1}{2}\) và x = \( - \frac{3}{5}\)
Thay lần lượt hai giá trị vào phương trình đã cho ta thấy chỉ có giá trị x = \( - \frac{3}{5}\) thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là S = \(\left\{ { - \frac{3}{5}} \right\}\).
b) \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\)
⇒ \(\sqrt {{x^2} + x + 8} = \sqrt {{x^2} + 4x + 1} \)
⇒ x2 + x + 8 = x2 + 4x + 1
⇒ 3x = 7
⇒ x = \(\frac{7}{3}\)
Thay x = \(\frac{7}{3}\) vào phương trình đã cho ta thấy thỏa mãn.
Vậy tập nghiệm của phương trình là S = \(\left\{ {\frac{7}{3}} \right\}\).
c) \(\sqrt {4{x^2} + x - 1} = x + 1\)
⇒ 4x2 + x – 1 = x2 + 2x + 1
⇒ 3x2 – x – 2 = 0
⇒ x = 1 và x = \( - \frac{2}{3}\)
Thay lần lượt các giá trị của x vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.
Vậy tập nghiệm của phương trình là S = \(\left\{ { - \frac{2}{3};1} \right\}\).
d) \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \)
⇒ 2x2 – 10x – 29 = x – 8
⇒ 2x2 – 11x – 21 = 0
⇒ x = 7 và x = \( - \frac{3}{2}\)
Thay lần lượt hai giá trị này vào phương trình đã cho ta thấy cả hai giá trị đều không thỏa mãn.
Vậy tập nghiệm của phương trình là S = \(\emptyset \).Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247