Một tam giác vuông có một cạnh góc vuông ngắn hơn cạnh huyền 8cm. Tính độ dài cạnh huyền, biết chu vi tam giác 30 cm.
Không mất tính tổng quát giả sử tam giác cần xét là tam giác vuông tại A có độ dài cạnh AC ngắn hơn cạnh huyền BC 8cm.
Đặt BC = x (cm)
Khi đó AC = x – 8 (cm)
Xét tam giác ABC vuông tại A, có:
BC2 = AB2 + AC2 (định lí Py – ta – go)
⇔ x2 = AB2 + (x – 8)2
⇔ AB2 = x2 – (x – 8)2
⇔ AB2 = x2 – (x2 – 16x + 64)
⇔ AB2 = 16x – 64
⇔ AB = \(\sqrt {16x - 64} \) (cm)
Chu vi tam giác ABC là: x + x – 8 + \(\sqrt {16x - 64} \) = 2x – 8 + \(\sqrt {16x - 64} \) (cm)
Mà chu vi tam giác bằng 30cm nên có phương trình 2x – 8 + \(\sqrt {16x - 64} \)= 30
⇒ \(\sqrt {16x - 64} \)= 38 – 2x
⇒ 16x – 64 = 1 444 – 152x + 4x2
⇒ 4x2 – 168x + 1 508 = 0
⇒ x2 – 42x + 377 = 0
⇒ x = 29 và x = 13
Thay lần lượt vào phương trình đã cho ta thấy chỉ có x = 13 thỏa mãn.
Vậy độ dài cạnh huyền bằng 13cm thì tam giác thỏa mãn điều kiện đầu bài.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247