Từ bảy chữ số 1; 2; 3; 4; 5; 6; 7, lập các số có ba chữ số đôi một khác nhau.

Câu hỏi :

Từ bảy chữ số 1; 2; 3; 4; 5; 6; 7, lập các số có ba chữ số đôi một khác nhau.

a) Có thể lập được bao nhiêu số như vậy?

b) Trong các số đó có bao nhiêu số lẻ?

* Đáp án

* Hướng dẫn giải

a) Cách 1: Gọi số có ba chữ số cần tìm là: \(\overline {abc} \), trong đó a, b, c được lấy từ các chữ số đã cho, a ≠ 0 và a, b, c đôi một khác nhau.

Khi đó:

a có 7 cách chọn từ các chữ số đã cho;

b có 6 cách chọn từ các chữ số đã cho;

c có 5 cách chọn từ các chữ số đã cho.

Theo quy tắc nhân ta có 7.6.5 = 210 cách.

Vậy có thể lập được 210 số thỏa mãn yêu cầu bài toán.

Cách 2: Việc chọn ra 3 chữ số trong 7 chữ số và lập thành một số có ba chữ số là chỉnh hợp chập 3 của 7. Do đó số các số có ba chữ số đôi một khác nhau là: \(A_7^3 = 210\) số.

Vậy có thể lập được 210 số thỏa mãn yêu cầu bài toán.

b) Gọi số có ba chữ số cần tìm là: \(\overline {xyz} \), trong đó x, y, z được lấy từ các chữ số đã cho, x ≠ 0 và x, y, z đôi một khác nhau.

\(\overline {xyz} \) là số lẻ nên z có 4 cách chọn;

Vì y khác z nên y có 6 cách chọn;

Vì x khác z và y nên x có 5 cách chọn;

Theo quy tắc nhân ta có 4.6.5 = 120 cách.

Vậy có thể lập được 120 số thỏa mãn yêu cầu bài toán.

Copyright © 2021 HOCTAP247