Sử dụng công thức nhị thức Newton, khai triển các biểu thức sau: a) (3x + y)^4;

Câu hỏi :

Sử dụng công thức nhị thức Newton, khai triển các biểu thức sau:

a) (3x + y)4;

b) \({\left( {x - \sqrt 2 } \right)^5}\).

* Đáp án

* Hướng dẫn giải

a) Áp dụng khai triển nhị thức Newton với a = 3x và b = y, ta có:

(3x + y)4 = \(C_4^0.{\left( {3x} \right)^4} + C_4^1.{\left( {3x} \right)^3}.y + C_4^2.{\left( {3x} \right)^2}.{y^2} + C_4^3.{\left( {3x} \right)^1}.{y^3} + C_4^4.{y^4}\)

\( = 81{x^4} + 108{x^3}y + 54{x^2}{y^2} + 12x{y^3} + {y^4}\).

Vậy (3x + y)4 \( = 81{x^4} + 108{x^3}y + 54{x^2}{y^2} + 12x{y^3} + {y^4}\).

b) Áp dụng khai triển nhị thức Newton với a = 3x và b = y, ta có:

\({\left( {x - \sqrt 2 } \right)^5}\) = \(C_5^0\)x5 + \(C_5^1\)x4.\({\left( { - \sqrt 2 } \right)^1}\)+ \(C_5^2\)x3\({\left( { - \sqrt 2 } \right)^2}\) + \(C_5^3\)x2\({\left( { - \sqrt 2 } \right)^3}\) + \(C_5^4\)x\({\left( { - \sqrt 2 } \right)^4}\) + \(C_5^5\)\({\left( { - \sqrt 2 } \right)^5}\)

= x5\(5\sqrt 2 \)x4 + 20x3\(20\sqrt 2 \)x2 + 20x – \(4\sqrt 2 \).

Vậy \({\left( {x - \sqrt 2 } \right)^5}\) = \(C_5^0\)x5\(5\sqrt 2 \)x4 + 20x3\(20\sqrt 2 \)x2 + 20x – \(4\sqrt 2 \).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Toán 10 Bài 3. Nhị thức Newtơn có đáp án !!

Số câu hỏi: 10

Copyright © 2021 HOCTAP247