Sử dụng công thức nhị thức Newton, khai triển các biểu thức sau:
a) (3x + y)4;
b) \({\left( {x - \sqrt 2 } \right)^5}\).
a) Áp dụng khai triển nhị thức Newton với a = 3x và b = y, ta có:
(3x + y)4 = \(C_4^0.{\left( {3x} \right)^4} + C_4^1.{\left( {3x} \right)^3}.y + C_4^2.{\left( {3x} \right)^2}.{y^2} + C_4^3.{\left( {3x} \right)^1}.{y^3} + C_4^4.{y^4}\)
\( = 81{x^4} + 108{x^3}y + 54{x^2}{y^2} + 12x{y^3} + {y^4}\).
Vậy (3x + y)4 \( = 81{x^4} + 108{x^3}y + 54{x^2}{y^2} + 12x{y^3} + {y^4}\).
b) Áp dụng khai triển nhị thức Newton với a = 3x và b = y, ta có:
\({\left( {x - \sqrt 2 } \right)^5}\) = \(C_5^0\)x5 + \(C_5^1\)x4.\({\left( { - \sqrt 2 } \right)^1}\)+ \(C_5^2\)x3\({\left( { - \sqrt 2 } \right)^2}\) + \(C_5^3\)x2\({\left( { - \sqrt 2 } \right)^3}\) + \(C_5^4\)x\({\left( { - \sqrt 2 } \right)^4}\) + \(C_5^5\)\({\left( { - \sqrt 2 } \right)^5}\)
= x5 – \(5\sqrt 2 \)x4 + 20x3 – \(20\sqrt 2 \)x2 + 20x – \(4\sqrt 2 \).
Vậy \({\left( {x - \sqrt 2 } \right)^5}\) = \(C_5^0\)x5 – \(5\sqrt 2 \)x4 + 20x3 – \(20\sqrt 2 \)x2 + 20x – \(4\sqrt 2 \).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247