Một nhóm tình nguyện viên gồm 4 học sinh lớp 10A, 5 học sinh lớp 10B và 6 học sinh lớp 10C. Để tham gia một công việc tình nguyện, nhóm có bao nhiêu cách cử ra:
a) 1 thành viên của nhóm?
b) 3 thành viên của nhóm đang học ở ba lớp khác nhau?
c) 2 thành viên của nhóm đang học ở hai lớp khác nhau?
a) Số thành viên của nhóm là 4 + 5 + 6 = 15 (thành viên)
Số cách để nhóm cử ra một thành viên của nhóm tham gia một công việc tình nguyện là tổ hợp chập 1 của 15. Do đó ta có số cách cử một thành viên trong nhóm là:
\(C_{15}^1 = 15\) (cách).
Vậy số cách cử một thành viên trong nhóm là 15 cách.
b) Số cách để nhóm cử ra ba thành viên của nhóm đang học ở ba lớp khác nhau tham gia một công việc tình nguyện là:
\(C_4^1.C_5^1.C_6^1 = 120\)(cách).
Vậy có 120 cách để nhóm cử ra ba thành viên của nhóm đang học ở ba lớp khác nhau tham gia một công việc tình nguyện.
c) Số cách cử ra 2 thành viên của nhóm đang học ở hai lớp khác nhau có thể có 3 phương án khác nhau:
- Phương án 1: 1 thành viên lớp 10A và 1 thành viên lớp 10B, có \(C_4^1.C_5^1 = 20\)(cách).
- Phương án 2: 1 thành viên lớp 10B và 1 thành viên lớp 10C, có \(C_5^1.C_6^1 = 30\)(cách).
- Phương án 3: 1 thành viên lớp 10A và 1 thành viên lớp 10C, có \(C_4^1.C_6^1 = 24\)(cách).
Theo quy tắc cộng, có tất cả 20 + 30 + 24 = 74 cách cử ra 2 thành viên của nhóm đang học ở hai lớp khác nhau tham gia một công việc tình nguyện.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247