Mẫu số liệu về thời gian (đơn vị: giây) chạy cự li 500 m của 5 người là:
55,2 58,8 62,4 54 59,4 (5)
Mẫu số liệu về thời gian (đơn vị: giây) chạy cự li 1 500 m của 5 người đó là:
271,2 261 276 282 270 (6)
Tính phương sai của mẫu (5) và mẫu (6). Từ đó cho biết cự li chạy nào có kết quả đồng đều hơn.
Hướng dẫn giải:
Số trung bình cộng của mẫu số liệu (5) là:
\[\overline {{x_{\left( 5 \right)}}} = \frac{{55,2 + 58,8 + 62,4 + 54 + 59,4}}{5} = 57,96\].
Phương sai của mẫu số liệu (5) là:
\(s_{\left( 5 \right)}^2 = \frac{{{{\left( {55,2 - 57,96} \right)}^2} + {{\left( {58,8 - 57,96} \right)}^2} + {{\left( {62,4 - 57,96} \right)}^2} + {{\left( {54 - 57,96} \right)}^2} + {{\left( {59,4 - 57,96} \right)}^2}}}{5}\)
= 9,1584.
Số trung bình cộng của mẫu số liệu (6) là:
\(\overline {{x_{\left( 6 \right)}}} = \frac{{271,2\; + 261\; + 276\; + 282\; + 270}}{5} = 272,04\).
Phương sai của mẫu số liệu (6) là:
\(s_{\left( 6 \right)}^2 = \frac{1}{5}\)[(271,2 − 272,04)2 + (261 − 272,04)2 + (276 − 272,04)2 + (282 − 272,04)2 + (270 − 272,04)2] = 48,3264.
Vì 9,1584 < 48,3264 nên \(s_{\left( 5 \right)}^2 < s_{\left( 6 \right)}^2\).
Vậy cự li chạy 500 m có kết quả đồng đều hơn.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247