Gieo một xúc xắc hai lần liên tiếp. Xét biến cố “Số chấm trong hai lần gieo đều là số nguyên tố”. Tính xác suất của biến cố đó.

Câu hỏi :

Gieo một xúc xắc hai lần liên tiếp. Xét biến cố “Số chấm trong hai lần gieo đều là số nguyên tố”. Tính xác suất của biến cố đó.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Không gian mẫu trong trò chơi trên là tập hợp

Ω = {(i; j) | i, j = 1, 2, 3, 4, 5, 6},

trong đó (i; j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”.

Vậy n(Ω) = 36.

Gọi biến cố A: “Số chấm trong hai lần gieo đều là số nguyên tố”.

Các kết quả thuận lợi cho biến cố A là: (2; 2); (2; 3); (2; 5); (3; 2); (3; 3); (3; 5); (5; 2); (5; 3); (5; 5), tức là A = {(2; 2); (2; 3); (2; 5); (3; 2); (3; 3); (3; 5); (5; 2); (5; 3); (5; 5)}. Do đó, n(A) = 9.

Vậy xác xuất của biến cố A là: P(A) = \(\frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{9}{{36}} = \frac{1}{4}\).

Copyright © 2021 HOCTAP247