Tính số đo góc giữa hai đường thẳng d1: 2x – y + 5 = 0 và d2: x – 3y + 3 = 0.

Câu hỏi :

Tính số đo góc giữa hai đường thẳng d1: 2x – y + 5 = 0 và d2: x – 3y + 3 = 0.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Đường thẳng d1 có vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {2;\, - 1} \right)\).

Đường thẳng d2 có vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {1;\, - 3} \right)\).

Do đó, cos(d1, d2) = \(\left| {\cos \left( {\overrightarrow {{n_1}} ,\,\overrightarrow {{n_2}} } \right)\,} \right| = \frac{{\left| {\overrightarrow {{n_1}} \,.\,\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|\,.\left| {\overrightarrow {{n_2}} } \right|}}\)\( = \frac{{\left| {2.1 + \left( { - 1} \right).\left( { - 3} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} \,.\,\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2}\).

Vậy (d1, d2) = 45°.

Copyright © 2021 HOCTAP247