Cho ba điểm A(2; 4), B(– 1; 2) và C(3; – 1). Viết phương trình đường thẳng đi qua B đồng thời cách đều A và C.

Câu hỏi :

Cho ba điểm A(2; 4), B(– 1; 2) và C(3; – 1). Viết phương trình đường thẳng đi qua B đồng thời cách đều A và C.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Gọi d là đường thẳng đi qua B và cách đều A và C.

Do d đi qua B(– 1; 2) nên phương trình đường thẳng d có dạng a(x + 1) + b(y – 2) = 0 hay ax + by + a – 2b = 0 (với a và b không đồng thời bằng 0).

Vì d cách đều A và C nên d(A, d) = d(C, d).

\( \Leftrightarrow \frac{{\left| {2a + 4b + a - 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{{\left| {3a - b + a - 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

\( \Leftrightarrow \left| {3a + 2b} \right| = \left| {4a - 3b} \right|\)

Trường hợp 1: 3a + 2b = 4a – 3b a = 5b.

Chọn b = 1, a = 5 . 1 = 5, ta có phương trình đường thẳng d là 5x + y + 5 – 2 = 0 hay 5x + y + 3 = 0.

Trường hợp 2: 3a + 2b = – (4a – 3b) 7a = b.

Chọn a = 1, b = 7 . 1 = 7, ta có phương trình đường thẳng d là x + 7y + 1 – 2 . 7 = 0 hay x + 7y – 13 = 0.

Vậy phương trình đường thẳng cần lập là 5x + y + 3 = 0 hoặc x + 7y – 13 = 0.

Lưu ý: Do vectơ \(\overrightarrow n = \left( {a;\,b} \right)\) là vectơ pháp tuyến của đường thẳng d, mà một đường thẳng có vô số vectơ pháp tuyến, nên khi ta có hệ thức liên hệ giữa a và b thì ta có thể chọn a rồi suy ra b hoặc ngược lại.

Copyright © 2021 HOCTAP247