Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển. Trên màn hình ra đa của trạm điều khiển (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), sau khi xuất phát t (giờ) (t ≥ 0), vị trí của tàu A có tọa độ được xác định bởi công thức: \(\left\{ \begin{array}{l}x = 3 - 33t\\y = - \,4 + 25t\end{array} \right.\), vị trí của tàu B có tọa độ là (4 – 30t; 3 – 40t).
Tính côsin góc giữa hai đường đi của hai tàu A và B.
Hướng dẫn giải
Giả sử đường đi của tàu A là d1, khi đó phương trình d1: \(\left\{ \begin{array}{l}x = 3 - 33t\\y = - \,4 + 25t\end{array} \right.\).
Giả sử đường đi của tàu B là d2, vị trí của tàu B có tọa độ là (4 – 30t; 3 – 40t) nên phương trình d2: \(\left\{ \begin{array}{l}x = 4 - 30t\\y = 3 - 40t\end{array} \right.\).
Đường thẳng d1 có vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( { - 33;\,25} \right)\).
Đường thẳng d2 có vectơ chỉ phương là \(\overrightarrow {{u_2}} = \left( { - 30;\, - 40} \right)\).
Do đó, cos(d1, d2) = \(\frac{{\left| {\left( { - 33} \right).\left( { - 30} \right) + 25.\left( { - 40} \right)} \right|}}{{\sqrt {{{\left( { - 33} \right)}^2} + {{25}^2}} \,.\,\sqrt {{{\left( { - 30} \right)}^2} + {{\left( { - 40} \right)}^2}} }} = \frac{{10}}{{50\sqrt {1714} }} = \frac{1}{{5\sqrt {1714} }}\)
Vậy côsin góc giữa hai đường đi của hai tàu A và B là \(\frac{1}{{5\sqrt {1714} }}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247