Tìm m sao cho đường thẳng 3x + 4y + m = 0 tiếp xúc với đường tròn
(x + 1)2 + (y – 2)2 = 4.
Hướng dẫn giải
Ta có: (x + 1)2 + (y – 2)2 = 4 ⇔ (x – (– 1))2 + (y – 2)2 = 22.
Đường tròn đã cho có tâm I(– 1; 2) và bán kính R = 2.
Gọi đường thẳng d có phương trình 3x + 4y + m = 0, đường thẳng này tiếp xúc với đường tròn đã cho khi và chỉ khi khoảng cách từ tâm I của đường tròn đến đường thẳng bằng bán kính của đường tròn hay d(I, d) = R
\( \Leftrightarrow \frac{{\left| {3.\left( { - 1} \right) + 4.2 + m} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 2\)
\( \Leftrightarrow \frac{{\left| {m + 5} \right|}}{5} = 2\) ⇔ |m + 5| = 10
Suy ra m + 5 = 10 hoặc m + 5 = – 10
Suy ra m = 5 hoặc m = – 15.
Vậy m = 5, m = – 15 thì thỏa mãn yêu cầu bài toán.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247