Cho Elip (E) có phương trình chính tắc ( frac{{{x^2}}}{{49}} + frac{{{y^2}}}{{25}} = 1. )Tìm tọa độ các giao điểm của (E) với trục Ox, Oy và tọa độ các tiêu điểm của (E).

Câu hỏi :

Cho Elip (E) có phương trình chính tắc \(\frac{{{x^2}}}{{49}} + \frac{{{y^2}}}{{25}} = 1.\)Tìm tọa độ các giao điểm của (E) với trục Ox, Oy và tọa độ các tiêu điểm của (E).

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Ta có: \(\frac{{{x^2}}}{{49}} + \frac{{{y^2}}}{{25}} = 1 \Leftrightarrow \frac{{{x^2}}}{{{7^2}}} + \frac{{{y^2}}}{{{5^2}}} = 1.\)

Do a > b > 0 nên elip (E) có a = 7, b = 5.

Ta có: c2 = a2 – b2 = 72 – 52 = 24, suy ra \(c = \sqrt {24} = 2\sqrt 6 \).

Vậy tọa độ các giao điểm của (E) với trục Ox là A1(– 7; 0), A2(7; 0), tọa độ các giao điểm của (E) với trục Oy là B(0; – 5), B2(0; 5) và tọa độ các tiêu điểm của E là \({F_1}\left( { - 2\sqrt 6 ;\,\,0} \right),\,\,{F_2}\left( {2\sqrt 6 ;\,\,0} \right)\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Ba đường conic có đáp án !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247