Hướng dẫn giải
Phương trình chính tắc của elip (E) có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), trong đó a > b > 0.
Elip (E) cắt trục Ox tại A1(– 5; 0), thay vào phương trình elip ta được:
\(\frac{{{{\left( { - 5} \right)}^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1 \Leftrightarrow {a^2} = {\left( { - 5} \right)^2} \Leftrightarrow {a^2} = {5^2}\), suy ra a = 5 (do a > 0).
Elip (E) cắt trục Oy tại \({B_2}\left( {0;\,\sqrt {10} } \right)\), thay vào phương trình elip ta được:
\(\frac{{{0^2}}}{{{a^2}}} + \frac{{{{\left( {\sqrt {10} } \right)}^2}}}{{{b^2}}} = 1 \Leftrightarrow {b^2} = {\left( {\sqrt {10} } \right)^2} \Rightarrow b = \sqrt {10} \) (do b > 0).
Vì 5 > \(\sqrt {10} \) nên a > b > 0 (thỏa mãn điều kiện).
Vậy phương trình chính tắc của elip (E) là \(\frac{{{x^2}}}{{{5^2}}} + \frac{{{y^2}}}{{{{\left( {\sqrt {10} } \right)}^2}}} = 1\,\,hay\,\,\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{10}} = 1\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247