Viết phương trình chính tắc của hypebol (H), biết (N left( { sqrt {10} ; , ,2} right) ) nằm trên (H) và hoành độ một giao điểm của (H) đối với trục Ox bằng 3.

Câu hỏi :

Viết phương trình chính tắc của hypebol (H), biết \(N\left( {\sqrt {10} ;\,\,2} \right)\) nằm trên (H) và hoành độ một giao điểm của (H) đối với trục Ox bằng 3.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Phương trình chính tắc của hypebol (H) có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), trong đó a > 0, b > 0.

Hoành độ một giao điểm của (H) với trục Ox là 3, do đó tọa độ giao điểm của (H) với trục Ox là (3; 0). Thay tọa độ này vào phương trình hypebol, ta được:

\(\frac{{{3^2}}}{{{a^2}}} - \frac{{{0^2}}}{{{b^2}}} = 1 \Leftrightarrow {a^2} = {3^2} \Rightarrow a = 3\) (do a > 0).

Điểm \(N\left( {\sqrt {10} ;\,\,2} \right)\) nằm trên (H) nên tọa độ điểm N thỏa mãn phương trình (H), khi đó ta có: \(\frac{{{{\left( {\sqrt {10} } \right)}^2}}}{{{3^2}}} - \frac{{{2^2}}}{{{b^2}}} = 1 \Leftrightarrow {b^2} = 36 \Leftrightarrow {b^2} = {6^2} \Rightarrow b = 6\)(do b > 0).

Vậy phương trình chính tắc của hypebol (H) là \(\frac{{{x^2}}}{{{3^2}}} - \frac{{{y^2}}}{{{6^2}}} = 1\,\,\,hay\,\,\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{36}} = 1\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập Ba đường conic có đáp án !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247