Cho hai điểm M(1; 0) và N(–2; –1) và hệ bất phương trình

Câu hỏi :

Cho hai điểm M(1; 0) và N(–2; –1) và hệ bất phương trình \[\left\{ \begin{array}{l}2x \le 1\\2x + 5y < 3\end{array} \right.\]. Trong hai điểm M và N, điểm nào thuộc miền nghiệm của hệ đã cho?


A. Cả M và N đều không thuộc miền nghiệm của hệ đã cho.



B. Điểm M thuộc miền nghiệm còn N không thuộc miền nghiệm của hệ đã cho.



C. Điểm M không thuộc miền nghiệm còn N thuộc miền nghiệm của hệ đã cho.



D. Cả hai điểm M và N đều thuộc miền nghiệm của hệ đã cho.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: C

+ Ta có : 2.1 = 2 > 1 và 2. 1 + 5. 0 = 2 < 3.

Do đó cặp số (1; 0) không là nghiệm của bất phương trình 2x ≤ 1.

Suy ra cặp số (1; 0) không là nghiệm của hệ bất phương trình\[\left\{ \begin{array}{l}2x \le 1\\2x + 5y < 3\end{array} \right.\].

Vậy nên, điểm M(1; 0) không thuộc miền nghiệm của hệ bất phương trình\[\left\{ \begin{array}{l}2x \le 1\\2x + 5y < 3\end{array} \right.\]

+ Ta có : 2. (–2) = –4 < 1 và 2. (–2) + 5. (–1) = –9 < 3.

Do đó cặp số (–2; –1) là nghiệm của của hai bất phương trình 2x ≤ 1 và 2x + 5y < 3.

Suy ra cặp số (–2; –1) là nghiệm của hệ bất phương trình\[\left\{ \begin{array}{l}2x \le 1\\2x + 5y < 3\end{array} \right.\].

Vậy nên, điểm N(–2; –1) thuộc miền nghiệm của hệ bất phương trình\[\left\{ \begin{array}{l}2x \le 1\\2x + 5y < 3\end{array} \right.\].

Do đó điểm M không thuộc miền nghiệm, điểm N thuộc miền nghiệm của hệ đã cho. Vậy ta chọn đáp án C.

Copyright © 2021 HOCTAP247