A. (0; 0);
B. (\(\frac{2}{3}\); \(\frac{{ - 2}}{3}\));
C. (0; –1);
D. (1; 0).
Đáp án đúng là: C
Ta biểu diễn miền nghiệm của hệ đã cho trên mặt phẳng tọa độ, ta được hình ảnh sau:
Khi đó miền tứ giác OABC (bao gồm cả các cạnh) là miền nghiệm của hệ bất phương trình đã cho.
Các đỉnh O, A, B, C có tọa độ: O(0; 0); A(1; 0); B(\(\frac{2}{3}\); \(\frac{{ - 2}}{3}\)); C(0; –1).
Ta tính giá trị của F = 2x + y tại các đỉnh của tứ giác OABC.
Tại O(0; 0) ta có F = 2.0 + 0 = 0;
Tại A(1; 0) ta có F = 2.1 + 0 = 2;
Tại B \(\left( {\frac{2}{3};\frac{{ - 2}}{3}} \right)\) ta có F = 2.\(\frac{2}{3}\)+ \(\frac{{ - 2}}{3}\) = \(\frac{2}{3}\);
Tại C(0; –1) ta có F = 2.0 + (–1) = –1;
Suy ra F = 2x + y nhỏ nhất tại C(0; –1), với Fmin = –1.
Do đó ta chọn đáp án C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247