Trong mặt phẳng tọa độ Oxy, cho các điểm A(k - 1/3; 5), B(-2; 12)

Câu hỏi :

Trong mặt phẳng tọa độ Oxy, cho các điểm \(A\left( {k - \frac{1}{3};5} \right)\), B(-2; 12) và

C\(\left( {\frac{2}{3};k - 2} \right)\). Giá trị dương của k thuộc khoảng nào dưới đây thì ba điểm A, B, C thẳng hàng.


A. (10; 12);



B. (-2; 0);



C. (14; 15);



D. (12; 14).


* Đáp án

* Hướng dẫn giải

Đáp án đúng là D

Ta có: \(\overrightarrow {AC} = \left( {\frac{2}{3} - \left( {k - \frac{1}{3}} \right);k - 2 - 5} \right) = \left( {1 - k;k - 7} \right)\),

\(\overrightarrow {BC} = \left( {\frac{2}{3} - \left( { - 2} \right);k - 2 - 12} \right) = \left( {\frac{8}{3};k - 14} \right)\)

Để ba điểm A, B, C thẳng hàng khi \(\overrightarrow {AC} \)\(\overrightarrow {BC} \) cùng phương

\( \Leftrightarrow \frac{{1 - k}}{{\frac{8}{3}}} = \frac{{k - 7}}{{k - 14}}\)

(1 – k)(k – 14) = \(\frac{8}{3}\)(k – 7)

- k2 + 15k – 14 = \(\frac{8}{3}\)k – \(\frac{{56}}{3}\)

- 3k2 + 45k – 42 = 8k – 56

3k2 – 37k – 14 = 0

k1 ≈ 12,7 hoặc k2 ≈ -0,37.

Ta thấy k1 là giá trị dương nằm trong khoảng (12; 14).

Copyright © 2021 HOCTAP247