Phương trình: căn bậc hai (x^2 + x + 4) + căn bậc hai (x^2 + x + 1)

Câu hỏi :

Phương trình: \[\sqrt {{x^2} + x + 4} + \sqrt {{x^2} + x + 1} = \sqrt {2{x^2} + 2x + 9} \] có tích các nghiệm là:


A. P = 1;



B. P = – 1;



C. P = 0;



D. P = 2.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là C

Tập xác định D = ℝ, đặt t = x2 + x + 1 (t ≥ 0).

Phương trình đã cho trở thành \[\sqrt {t + 3} + \sqrt t = \sqrt {2t + 7} \] \[ \Leftrightarrow 2t + 3 + 2\sqrt {t\left( {t + 3} \right)} = 2t + 7\]

\[ \Leftrightarrow \sqrt {t\left( {t + 3} \right)} = 2\]

t(t + 3) = 4

t2 + 3t – 4 = 0

\[ \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 4\end{array} \right.\]

Kết hợp điều kiện thấy t = 1 thỏa mãn.

Với t = 1 ta có x2 + x + 1 = 1\[ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\end{array} \right.\].

Thay lần lượt các giá trị x = 0 và x = -1 vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.

Vậy tích các nghiệm của phương trình (-1).0 = 0.

Copyright © 2021 HOCTAP247