Số nghiệm của phương trình căn bậc hai (3 - x + x^2) - căn bậc hai (2 + x - x^2)

Câu hỏi :

Số nghiệm của phương trình \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\] là:


A. 0;



B. 1;



C. 2;



D. 3.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: C

Điều kiện: \[\left\{ \begin{array}{l}3 - x + {x^2} \ge 0\\2 + x - {x^2} \ge 0\end{array} \right. \Leftrightarrow - 1 \le x \le 2\]

Ta có \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\]

\[ \Leftrightarrow \left\{ \begin{array}{l} - 1 \le x \le 2\\3 - x + {x^2} = 1 + 2 + x - {x^2} + 2\sqrt {2 + x - {x^2}} \end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l} - 1 \le x \le 2\\2 + x - {x^2} + \sqrt {2 + x - {x^2}} - 2 = 0(1)\end{array} \right.\] .

Đặt \[\sqrt {2 + x - {x^2}} = t(t \ge 0)\]

Từ (1) ta có phương trình t2 + t – 2 = 0 \[ \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 2\end{array} \right.\]

Kết hợp với điều kiện t = 1 thỏa mãn

Với t = 1 ta có \[\sqrt {2 + x - {x^2}} = 1\] \[ \Rightarrow {x^2} - x - 1 = 0\]\[ \Leftrightarrow x = \frac{{1 \pm \sqrt 5 }}{2}\]( thỏa mãn)

Vậy phương trình có 2 nghiệm.

Copyright © 2021 HOCTAP247