Số nghiệm của phương trình : căn bậc hai (2 - x) + 4 / (căn bậc hai (2 - x) + 3)

Câu hỏi :

Số nghiệm của phương trình :\(\sqrt {2 - x} + \frac{4}{{\sqrt {2 - x} + 3}} = 2\) là:


A. 0;



B. 1;



C. 2;



D. 3.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: B

Điều kiện của phương trình : \(\left\{ \begin{array}{l}2 - x \ge 0\\\sqrt {2 - x} + 3 \ne 0\end{array} \right. \Leftrightarrow x \le 2\)

Đặt \[\sqrt {2 - x} = t(t \ge 0)\] ta có \(\sqrt {2 - x} + \frac{4}{{\sqrt {2 - x} + 3}} = 2\) \( \Leftrightarrow t + \frac{4}{{t + 3}} = 2\)

\( \Leftrightarrow {t^2} + t - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 2\end{array} \right.\)

Kết hợp điều kiện t = 1 thỏa mãn

Với t = 1 ta có \[\sqrt {2 - x} = 1 \Leftrightarrow x = 1\]

Vậy phương trình có một nghiệm x = 1.

Copyright © 2021 HOCTAP247