Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(x0; y0) và đường thẳng delta

Câu hỏi :

Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M\left( {{x_0};{y_0}} \right)\) và đường thẳng \(\Delta \): ax + by + c = 0. Khoảng cách từ điểm M đến \(\Delta \) được tính bằng công thức:


A.   \(d\left( {M,\Delta } \right) = \,\frac{{\left| {\left. {a{x_0} + b{y_0}} \right|} \right.}}{{\sqrt {{a^2} + {b^2}} }};\)                     



B. \(d\left( {M,\Delta } \right) = \,\frac{{a{x_0} + b{y_0}}}{{\sqrt {{a^2} + {b^2}} }};\)


C.      \[d\left( {M,\Delta } \right) = \,\frac{{\left| {\left. {a{x_0} + b{y_0} + c} \right|} \right.}}{{\sqrt {{a^2} + {b^2}} }};\]


D. \[d\left( {M,\Delta } \right) = \,\frac{{a{x_0} + b{y_0} + c}}{{\sqrt {{a^2} + {b^2}} }}.\]


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: C

Khoảng cách từ điểm M đến đường thẳng ∆ là: \[d\left( {M,\Delta } \right) = \,\frac{{\left| {\left. {a{x_0} + b{y_0} + c} \right|} \right.}}{{\sqrt {{a^2} + {b^2}} }}.\]

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Toán 10 Bài ôn tập chương 7 có đáp án !!

Số câu hỏi: 30

Copyright © 2021 HOCTAP247