Đáp án nào đúng, góc giữa hai đường thẳng sau: d1: 2x + 2 căn bậc hai 3 y + 5 = 0

Câu hỏi :

Đáp án nào đúng, góc giữa hai đường thẳng sau:

\({d_1}:2x + 2\sqrt 3 y + 5 = 0\)\({d_2}\): y - 6 = 0


A. \({30^{\rm{o}}};\)                     



B. \({45^{\rm{o}}};\)                     



C. \({60^{\rm{o}}};\)                     



D. \({90^{\rm{o}}}.\)


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: A

Ta có:

\(\left\{ \begin{array}{l}{d_1}:2x + 2\sqrt 3 y + 5 = 0 \Rightarrow {{\vec n}_1} = \left( {1;\sqrt 3 } \right)\\{d_2}:y - 6 = 0 \Rightarrow {{\vec n}_2} = \left( {0;1} \right)\end{array} \right.\)\({\vec n_1}\); \({\vec n_2}\) lần lượt là vectơ pháp tuyến của đường thẳng \({d_1}\); \({d_2}\). Áp dụng công thức góc giữa hai đường thẳng:

\(\cos \varphi = \frac{{\left| {\sqrt 3 } \right|}}{{\sqrt {1 + 3} .\sqrt {0 + 1} }} = \frac{{\sqrt 3 }}{2} \Rightarrow \varphi = {30^ \circ }.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Toán 10 Bài ôn tập chương 7 có đáp án !!

Số câu hỏi: 30

Copyright © 2021 HOCTAP247