Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tìm xác suất để

Câu hỏi :

Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tìm xác suất để có 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ chia hết cho 10.

A. \(\frac{{99}}{{667}}\);

B. \(\frac{{98}}{{667}}\);

C. \(\frac{{97}}{{667}}\);

D. \(\frac{{96}}{{667}}\).

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: A

Số phần tử của không gian mẫu là: n(Ω) = \(C_{30}^{10} = 30045015\)(vì chọn 10 tấm thẻ trong 30 tấm thẻ).

Gọi A là biến cố lấy được 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ chia hết cho 10.

Công đoạn 1, lấy 5 tấm thẻ mang số lẻ có: \(C_{15}^5\) = 3003 (cách) (vì có 15 tấm thẻ đánh số lẻ và lấy ra 3 tấm thẻ).

Công đoạn 2, lấy 5 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ chia hết cho 10 có: \(C_3^1C_{12}^4\) = 1485 (cách) (vì có 3 tấm thẻ đánh số chia hết cho 10 và lấy ra một tấm thẻ, có 12 tấm thẻ còn lại đánh số chẵn và lấy ra 4 tấm thẻ).

Số phần tử của biến cố A là: 3003.1485 = 4459455 (cách).

Vậy xác suất của biến cố A là: P(A) = \(\frac{{4459455}}{{30045015}} = \frac{{99}}{{667}}\).

Copyright © 2021 HOCTAP247