Một nhóm gồm 8 nam và 7 nữ. Chọn ngẫu nhiên 5 bạn. Xác suất để trong 5 bạn

Câu hỏi :

Một nhóm gồm 8 nam và 7 nữ. Chọn ngẫu nhiên 5 bạn. Xác suất để trong 5 bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ là:

A. \(\frac{{60}}{{143}}\);

B. \(\frac{{238}}{{429}}\);

C. \(\frac{{210}}{{429}}\);

D. \(\frac{{82}}{{143}}\).

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: B

Số phần tử của không gian mẫu là: n(Ω) = \(C_{15}^5 = 3003\)

Gọi A là biến cố: “5 bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ” ta có các trường hợp sau

Trường hợp 1, Số cách chọn 5 bạn trong đó có 4 nam, 1 nữ là: \(C_8^4.C_7^1\) (cách) (vì chọn 4 nam trong 8 nam và 1 nữ trong 7 nữ)

Trường hợp 2, Số cách chọn 5 bạn trong đó có 3 nam, 2 nữ là: \(C_8^3.C_7^2\) (cách) (vì chọn 3 nam trong 8 nam và 2 nữ trong 7 nữ)

Số phần tử của biến cố A là: n(A) = \(C_8^4.C_7^1\) + \(C_8^3.C_7^2\) = 1666

Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n(\Omega )}} = \frac{{1666}}{{3003}} = \frac{{238}}{{429}}\).

Copyright © 2021 HOCTAP247