Có 2 hộp bút chì màu. Hộp thứ nhất có có 5 bút chì màu đỏ và 7 bút chì màu xanh

Câu hỏi :

Có 2 hộp bút chì màu. Hộp thứ nhất có có 5 bút chì màu đỏ và 7 bút chì màu xanh. Hộp thứ hai có có 8 bút chì màu đỏ và 4 bút chì màu xanh. Chọn ngẫu nhiên mỗi hộp một cây bút chì. Xác suất để có 1 cây bút chì màu đỏ và 1 cây bút chì màu xanh là

A. \(\frac{{19}}{{36}}\);

B. \(\frac{{17}}{{36}}\);

C. \(\frac{5}{{12}}\);

D. \(\frac{7}{{12}}\).

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: A

Số phần tử của không gian mẫu là: n(Ω) = \(C_{12}^1.C_{12}^1\) = 144.

Gọi A là biến cố: “lấy được 1 cây bút chì màu đỏ và 1 cây bút chì màu xanh” ta có các trường hợp sau:

Trường hợp 1, Số cách chọn được 1 bút đỏ ở hộp 1, 1 bút xanh ở hộp 2 là: \(C_5^1.C_4^1\)

Trường hợp 2, Số cách chọn được 1 bút đỏ ở hộp 2, 1 bút xanh ở hộp 1 là: \(C_8^1.C_7^1\)

Số phần tử của biến cố A là: n(A) = \(C_5^1.C_4^1\) + \(C_8^1.C_7^1\) = 76

Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n(\Omega )}} = \frac{{76}}{{144}} = \frac{{19}}{{36}}\).

Copyright © 2021 HOCTAP247