Bạn Tít có một hộp bi gồm 2 viên đỏ và 8 viên trắng. Bạn Mít cũng có một hộp bi

Câu hỏi :

Bạn Tít có một hộp bi gồm 2 viên đỏ và 8 viên trắng. Bạn Mít cũng có một hộp bi giống như của bạn Tít. Từ hộp của mình, mỗi bạn lấy ra ngẫu nhiên 3 viên bi. Tính xác suất để Tít và Mít lấy được số bi đỏ như nhau.

A. \[\frac{{11}}{{25}}\];

B. \[\frac{1}{{120}}\];

C. \[\frac{7}{{15}}\];

D. \[\frac{{12}}{{25}}\].

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: A

Số phần tử của không gian mẫu là: n(Ω) = \(C_{10}^3.C_{10}^3\) = 14400.

Gọi A là biến cố: “số bi đỏ lấy được của 2 bạn là như nhau” ta có các trường hợp sau:

Tường hợp 1, cả hai đều không lấy được viên bi đỏ.

Vậy mỗi người đều lấy được 3 viên bi trắng số cách chọn là: \(C_8^3.C_8^3\) = 3136.

Tường hợp 2, cả hai đều lấy được 1 viên bi đỏ ta có số cách chọn là: \(C_2^1.C_8^2.C_2^1.C_8^2\) = 3136.

Tường hợp 2, cả hai đều lấy được 2 viên bi đỏ ta có số cách chọn là: \(C_2^2.C_8^1.C_2^2.C_8^1\) = 64.

Số phần tử của biến cố A là: n(A) = 3136 + 3136 + 64 = 6336.

Xác suất biến cố A là: \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{6336}}{{14400}} = \frac{{11}}{{25}}\).

Copyright © 2021 HOCTAP247