Cho X = {0; 1; 2; … ; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Tính

Câu hỏi :

Cho X = {0; 1; 2; … ; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Tính xác suất để trong ba số được chọn không có hai số liên tiếp.

A. \(\frac{{13}}{{35}}\);

B. \(\frac{7}{{20}}\);

C. \(\frac{{20}}{{35}}\);

D. \(\frac{{13}}{{20}}\).

* Đáp án

* Hướng dẫn giải

Số phần tử của không gian mẫu là: n(Ω) = \(C_{16}^3\) = 560.

Gọi A là biến cố: “3 số được chọn không có hai số liên tiếp”

Biến cố đối của biến cố A là \(\overline A \) “lấy ra ba số trong đó có đúng hai số liên tiếp nhau hoặc lấy ra được cả ba số liên tiếp nhau”. Khi đó ta có các trường hợp sau:

Trường hợp 1, lấy ra ba số trong đó có đúng hai số liên tiếp nhau.

+ Trong ba số lấy ra có hai số 0; 1 hoặc 14; 15 khi đó số thứ ba có 13 cách lấy. Do đó trường hợp này có: 2.13 = 26 cách lấy.

+ Trong ba số lấy ra không có hai số 0; 1 hoặc 14; 15 khi đó ta có 13 cặp số liên tiếp nhau và khác 0; 1 và 14; 15, số thứ ba có 12 cách lấy. Do đó trường hợp này có: 13.12 = 156 cách lấy.

Trường hợp 2, lấy ra được cả ba số liên tiếp nhau. Ta có lấy ba số liên tiếp nhau ta có 14 cách lấy. Do đó trường hợp này có: 14 cách lấy.

Số phần tử của biến cố \(\overline A \) là: n(\(\overline A \)) = 26 + 156 + 14 = 196.

Xác suất của biến cố \(\overline A \) là: P(\(\overline A \)) = \(\frac{{196}}{{560}} = \frac{7}{{20}}\)

Xác suất của biến cố A là: P(A) = 1 – P(\(\overline A \)) = \(1 - \frac{7}{{20}} = \frac{{13}}{{20}}\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Toán 10 Bài tập cuối chương 9 có đáp án !!

Số câu hỏi: 15

Copyright © 2021 HOCTAP247