Kết quả (b; c) của việc gieo một con súc sắc cân đối hai lần liên tiếp,

Câu hỏi :

Kết quả (b; c) của việc gieo một con súc sắc cân đối hai lần liên tiếp, trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện lần gieo thứ hai được thay vào phương trình bậc hai x2 + bx + c = 0. Tính xác suất để phương trình bậc hai đó vô nghiệm

A. \(\frac{7}{{12}}\);

B. \(\frac{{23}}{{36}}\);

C. \(\frac{{17}}{{36}}\);

D. \(\frac{5}{{36}}\).

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: C

Số phần tử của không gian mẫu là: n(Ω) = 6.6 = 36

Để phương trình x2 + bx + c = 0 vô nghiệm thì: ∆ = b2 – 4ac < 0.

Gọi A là biến cố của phép thử để kết quả (b; c) trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện lần gieo thứ hai thỏa mãn b2 – 4ac < 0 ta có các trường hợp sau:

Trường hợp 1, b = 1 vậy c = {1; 2; 3; 4; 5; 6} có 6 cách

Trường hợp 2, b = 2 vậy c = {2; 3; 4; 5; 6} có 5 cách

Trường hợp 3, b = 3 vậy c = {3; 4; 5; 6} có 4 cách

Trường hợp 4, b = 4 vậy c = {5; 6} có 2 cách

Số phần tử của biến cố A là: n(A) = 6 + 5 + 4 + 2 = 17

Vậy xác suất của biến cố A là: \[P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{17}}{{36}}\].

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Toán 10 Bài tập cuối chương 9 có đáp án !!

Số câu hỏi: 15

Copyright © 2021 HOCTAP247