Lời giải:
Xét tập A = {x ℚ | (2x + 1)(x2 + x 1)(2x2 3x + 1) = 0}
(2x + 1)(x2 + x 1)(2x2 3x + 1) = 0
Trường hợp 1.
2x + 1 = 0
2x = 1
x = \[\frac{{ - 1}}{2} \in \mathbb{Q}\]
Trường hợp 2.
x2 + x 1 = 0
= 12 4.(1) = 5 > 0.
Do đó phương trình có hai nghiệm phân biệt:
x1 = \[\frac{{ - 1 - \sqrt 5 }}{2} \notin \mathbb{Q}\] (do \[ - 1 - \sqrt 5 \notin \mathbb{Q}\]);
x2 = \[\frac{{ - 1 + \sqrt 5 }}{2} \notin \mathbb{Q}\] (do \[ - 1 + \sqrt 5 \notin \mathbb{Q}\]);
Trường hợp 3.
2x2 3x + 1 = 0
2x2 - 2x - x + 1 = 0
2x(x - 1) (x 1) = 0
(x - 1)(2x - 1) = 0
\[ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\2{\rm{x}} - 1 = 0\end{array} \right.\]
\[ \Leftrightarrow \left[ \begin{array}{l}x = 1 \in \mathbb{Q}\\x = \frac{1}{2} \in \mathbb{Q}\end{array} \right.\]
Vậy A = \[\left\{ {\frac{{ - 1}}{2};\frac{1}{2};1} \right\}.\]
Xét tập B = {x ℕ | x2 > 2 và x < 4}
Vì x ℕ và x < 4 nên x {0; 1; 2; 3}.
Ta có 02 = 0 < 2; 12= 1 < 2; 22</> = 4 > 2; 32 = 9 > 2.
Do đó B = {2; 3}.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247