Lời giải
Ta sử dụng các vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} \) và \(\overrightarrow {AE} \) lần lượt biểu diễn cho các lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) và hợp lực \(\overrightarrow F \) của \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) (hình vẽ dưới đây).
Khi đó do \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} \) nên tứ giác ABEC là hình bình hành
Lại có góc giữa hai vectơ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) bằng 60° nên \(\widehat {BAC} = 60^\circ \)
Suy ra \(\widehat {ECA} = 180^\circ - \widehat {BAC} = 180^\circ - 60^\circ = 120^\circ \)
Áp dụng định lí Cosin cho tam giác AEC ta có:
AE2 = AC2 + EC2 – 2.AC.EC.cos\(\widehat {ECA}\)
Hay \(A{E^2} = {\left( {2\sqrt 3 } \right)^2} + {\left( {2\sqrt 3 } \right)^2} - 2.2\sqrt 3 .2\sqrt 3 .c{\rm{os120}}^\circ \)
AE2 = 36
AE = 6
Do đó \(\left| {\overrightarrow F } \right| = 6\,\left( N \right)\)
Vì chất điểm A ở trạng thái cân bằng nên hai lực \(\overrightarrow F \) và \(\overrightarrow {{F_3}} \) ngược hướng và có cường độ bằng nhau
Tức là hai vectơ \(\overrightarrow {AE} \) và \(\overrightarrow {AD} \) là hai vectơ đối nhau
Do đó độ lớn của lực \(\overrightarrow {{F_3}} \) bằng \(\left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow F } \right| = 6\,\left( N \right)\)
Vậy độ lớn của lực \(\overrightarrow {{F_3}} \) bằng 6 N.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247