Cho tam giác ABC. Gọi D, E tương ứng là trung điểm của BC, CA. Hãy biểu thị các vectơ AB , vectơ BC , vectơ CA theo hai vectơ

Câu hỏi :

Cho tam giác ABC. Gọi D, E tương ứng là trung điểm của BC, CA. Hãy biểu thị các vectơ \(\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {CA} \) theo hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {BE} .\)

* Đáp án

* Hướng dẫn giải

Lời giải

Cho tam giác ABC. Gọi D, E tương ứng là trung điểm của BC, CA. Hãy biểu thị các vectơ AB , vectơ BC , vectơ CA theo hai vectơ (ảnh 1)

Ta có:

+) D là trung điểm của BC nên \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AD} \)

+) E là trung điểm của AC nên \(\overrightarrow {AC} = 2\overrightarrow {AE} \)

Do đó \(\overrightarrow {AC} = 2\overrightarrow {AE} = 2\left( {\overrightarrow {AB} + \overrightarrow {BE} } \right)\)

\( \Rightarrow \overrightarrow {AB} + 2\left( {\overrightarrow {AB} + \overrightarrow {BE} } \right) = 2\overrightarrow {AD} \)

\[ \Rightarrow \overrightarrow {AB} + 2\overrightarrow {AB} + 2\overrightarrow {BE} = 2\overrightarrow {AD} \]

\[ \Rightarrow 3\overrightarrow {AB} + 2\overrightarrow {BE} = 2\overrightarrow {AD} \]

\[ \Rightarrow 3\overrightarrow {AB} = 2\overrightarrow {AD} - 2\overrightarrow {BE} \]

\( \Rightarrow \overrightarrow {AB} = \frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} \)

+) Vì \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AD} \) nên \(\overrightarrow {AC} = 2\overrightarrow {AD} - \overrightarrow {AB} \)

Mà \(\overrightarrow {AB} = \frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} \)

\( \Rightarrow \overrightarrow {AC} = 2\overrightarrow {AD} - \left( {\frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} } \right)\)

\( \Rightarrow \overrightarrow {AC} = 2\overrightarrow {AD} - \frac{2}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} \)

\( \Rightarrow \overrightarrow {AC} = \frac{4}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} \)

\( \Rightarrow \overrightarrow {CA} = - \frac{4}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} \)

+) \(\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} \) (quy tắc hiệu)

\( \Rightarrow \overrightarrow {BC} = \left( {\frac{4}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} } \right) - \left( {\frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} } \right)\)

\[ \Rightarrow \overrightarrow {BC} = \frac{4}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} - \frac{2}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} \]

\[ \Rightarrow \overrightarrow {BC} = \frac{2}{3}\overrightarrow {AD} + \frac{4}{3}\overrightarrow {BE} \]

Vậy \(\overrightarrow {AB} = \frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} ;\) \[\overrightarrow {BC} = \frac{2}{3}\overrightarrow {AD} + \frac{4}{3}\overrightarrow {BE} \] và \(\overrightarrow {CA} = - \frac{4}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} .\)

Copyright © 2021 HOCTAP247