Lời giải
Ta có:
+) D là trung điểm của BC nên \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AD} \)
+) E là trung điểm của AC nên \(\overrightarrow {AC} = 2\overrightarrow {AE} \)
Do đó \(\overrightarrow {AC} = 2\overrightarrow {AE} = 2\left( {\overrightarrow {AB} + \overrightarrow {BE} } \right)\)
\( \Rightarrow \overrightarrow {AB} + 2\left( {\overrightarrow {AB} + \overrightarrow {BE} } \right) = 2\overrightarrow {AD} \)
\[ \Rightarrow \overrightarrow {AB} + 2\overrightarrow {AB} + 2\overrightarrow {BE} = 2\overrightarrow {AD} \]
\[ \Rightarrow 3\overrightarrow {AB} + 2\overrightarrow {BE} = 2\overrightarrow {AD} \]
\[ \Rightarrow 3\overrightarrow {AB} = 2\overrightarrow {AD} - 2\overrightarrow {BE} \]
\( \Rightarrow \overrightarrow {AB} = \frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} \)
+) Vì \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AD} \) nên \(\overrightarrow {AC} = 2\overrightarrow {AD} - \overrightarrow {AB} \)
Mà \(\overrightarrow {AB} = \frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} \)
\( \Rightarrow \overrightarrow {AC} = 2\overrightarrow {AD} - \left( {\frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} } \right)\)
\( \Rightarrow \overrightarrow {AC} = 2\overrightarrow {AD} - \frac{2}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} \)
\( \Rightarrow \overrightarrow {AC} = \frac{4}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} \)
\( \Rightarrow \overrightarrow {CA} = - \frac{4}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} \)
+) \(\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} \) (quy tắc hiệu)
\( \Rightarrow \overrightarrow {BC} = \left( {\frac{4}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} } \right) - \left( {\frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} } \right)\)
\[ \Rightarrow \overrightarrow {BC} = \frac{4}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} - \frac{2}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} \]
\[ \Rightarrow \overrightarrow {BC} = \frac{2}{3}\overrightarrow {AD} + \frac{4}{3}\overrightarrow {BE} \]
Vậy \(\overrightarrow {AB} = \frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} ;\) \[\overrightarrow {BC} = \frac{2}{3}\overrightarrow {AD} + \frac{4}{3}\overrightarrow {BE} \] và \(\overrightarrow {CA} = - \frac{4}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} .\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247