Trong mặt phẳng toạ độ Oxy cho ba điểm M(4; 0), N(5; 2) và P(2, 3). Tìm toạ độ các đỉnh của tam giác ABC, biết M, N, P theo thứ tự là trung điểm cạnh BC, CA, AB.

Câu hỏi :

Trong mặt phẳng toạ độ Oxy cho ba điểm M(4; 0), N(5; 2) và P(2, 3). Tìm toạ độ các đỉnh của tam giác ABC, biết M, N, P theo thứ tự là trung điểm cạnh BC, CA, AB.

* Đáp án

* Hướng dẫn giải

Lời giải

Cách 1:

Gọi A(xA; yA); B(xB; yB) và C(xC; yC) là tọa độ ba đỉnh của tam giác ABC.

Ta có:

+) M(4; 0) là trung điểm của BC nên \(\left\{ \begin{array}{l}4 = \frac{{{x_B} + {x_C}}}{2}\\0 = \frac{{{y_B} + {y_C}}}{2}\end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}{x_B} + {x_C} = 8\\{y_B} + {y_C} = 0\end{array} \right.\)(1)

+) N(5; 2) là trung điểm của CA nên \[\left\{ \begin{array}{l}5 = \frac{{{x_A} + {x_C}}}{2}\\2 = \frac{{{y_A} + {y_C}}}{2}\end{array} \right.\]

\[ \Rightarrow \left\{ \begin{array}{l}{x_A} + {x_C} = 10\\{y_A} + {y_C} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 10 - {x_A}\\{y_C} = 4 - {y_A}\end{array} \right.\](2)

+) P(2; 3) là trung điểm của AB nên \[\left\{ \begin{array}{l}2 = \frac{{{x_A} + {x_B}}}{2}\\3 = \frac{{{y_A} + {y_B}}}{2}\end{array} \right.\]

\[ \Rightarrow \left\{ \begin{array}{l}{x_A} + {x_B} = 4\\{y_A} + {y_B} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 4 - {x_A}\\{y_B} = 6 - {y_A}\end{array} \right.\](3)

Thay (2) và (3) vào (1) ta được:

\(\left\{ \begin{array}{l}\left( {4 - {x_A}} \right) + \left( {10 - {x_A}} \right) = 8\\\left( {6 - {y_A}} \right) + \left( {4 - {y_A}} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}14 - 2{x_A} = 8\\10 - 2{y_A} = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 3\\{y_A} = 5\end{array} \right.\) A(3; 5)

Khi đó \[\left\{ \begin{array}{l}{x_B} = 4 - 3 = 1\\{y_B} = 6 - 5 = 1\end{array} \right.\] B(1; 1)

\[\left\{ \begin{array}{l}{x_C} = 10 - 3 = 7\\{y_C} = 4 - 5 = - 1\end{array} \right.\] C(7; –1)

Vậy A(3; 5), B(1; 1) và C(7; –1).

Cách 2:

Trong mặt phẳng toạ độ Oxy cho ba điểm M(4; 0), N(5; 2) và P(2, 3). Tìm toạ độ các đỉnh của tam giác ABC, biết M, N, P theo thứ tự là trung điểm cạnh BC, CA, AB. (ảnh 1)

Do M, N, P

lần lượt là trung điểm của BC, CA, AB

Nên MN, NP, PM là các đường trung bình của tam giác ABC.

MN // AB, NP // BC, MP // AC.

+) Do MN // BM và NP // BM nên tứ giác MNPB là hình bình hành

\( \Rightarrow \overrightarrow {MB} = \overrightarrow {NP} \)

Gọi B(xB; yB) và có M(4; 0), N(5; 2) và P(2, 3).

\( \Rightarrow \overrightarrow {MB} = \left( {{x_B} - 4;{y_B}} \right)\) và \(\overrightarrow {NP} = \left( {2 - 5;3 - 2} \right) = \left( { - 3;1} \right)\)

Khi đó \(\overrightarrow {MB} = \overrightarrow {NP} \Leftrightarrow \left\{ \begin{array}{l}{x_B} - 4 = - 3\\{y_B} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 1\\{y_B} = 1\end{array} \right.\) B(1; 1)

Tương tự ta cũng có A(3; 5) và C(7; –1).

Vậy A(3; 5), B(1; 1) và C(7; –1).

Copyright © 2021 HOCTAP247