Lời giải
Giả sử R(x0; y0) là điểm cần tìm.
Với M(–2; 1) và N(4; 5) ta có:
+) \(\overrightarrow {RM} = \left( { - 2 - {x_0};1 - {y_0}} \right)\)
+) \(\overrightarrow {RN} = \left( {4 - {x_0};5 - {y_0}} \right)\)\( \Rightarrow 2\overrightarrow {RN} = \left( {8 - 2{x_0};10 - 2{y_0}} \right)\)
\( \Rightarrow \overrightarrow {RM} + 2\overrightarrow {RN} = \left( { - 2 - {x_0} + 8 - 2{x_0};1 - {y_0} + 10 - 2{y_0}} \right)\)
\[ \Rightarrow \overrightarrow {RM} + 2\overrightarrow {RN} = \left( {6 - 3{x_0};11 - 3y{ & _0}} \right)\]
Do đó \[\overrightarrow {RM} + 2\overrightarrow {RN} = \overrightarrow 0 \Leftrightarrow \left\{ \begin{array}{l}6 - 3{x_0} = 0\\11 - 3{y_0} = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 2\\{y_0} = \frac{{11}}{3}\end{array} \right.\] \( \Rightarrow R\left( {2;\frac{{11}}{3}} \right)\)
+) Ta xét ba điểm: P(3; 0), Q(0; 11) và \(R\left( {2;\frac{{11}}{3}} \right)\)
\( \Rightarrow \overrightarrow {PQ} = \left( { - 3;11} \right)\)và \(\overrightarrow {QR} = \left( {2;\frac{{11}}{3} - 11} \right) = \left( {2;\frac{{ - 22}}{3}} \right)\)
Có: \(\frac{{ - 3}}{2} = \frac{{11}}{{\frac{{ - 22}}{3}}}\) nên hai vectơ \(\overrightarrow {PQ} \) và \(\overrightarrow {QR} \) cùng phương
Do đó P, Q, R thẳng hàng
Vậy ba điểm P, Q, R thẳng hàng.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247