Lời giải
• Vì M là trung điểm của BC nên
\(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \)
\( \Rightarrow \overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\)
• N đối xứng với B qua C nên C là trung điểm của BN
\( \Rightarrow \overrightarrow {AB} + \overrightarrow {AN} = 2\overrightarrow {AC} \)\( \Rightarrow \overrightarrow {AN} = 2\overrightarrow {AC} - \overrightarrow {AB} \)
Khi đó \(\overrightarrow {AM} .\overrightarrow {AN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right).\left( {2\overrightarrow {AC} - \overrightarrow {AB} } \right)\)
\[ = \frac{1}{2}.\left( {2\overrightarrow {AB} .\overrightarrow {AC} - \overrightarrow {AB} .\overrightarrow {AB} + 2\overrightarrow {AC} .\overrightarrow {AC} - \overrightarrow {AC} .\overrightarrow {AB} } \right)\]
\[ = \frac{1}{2}.\left( {2{{\overrightarrow {AC} }^2} - {{\overrightarrow {AB} }^2} + \overrightarrow {AB} .\overrightarrow {AC} } \right)\]
\[ = \frac{1}{2}.\left( {2{{\left| {\overrightarrow {AC} } \right|}^2} - {{\left| {\overrightarrow {AB} } \right|}^2} + \overrightarrow {AB} .\overrightarrow {AC} } \right)\]
Mà \[\overrightarrow {AB} .\overrightarrow {AC} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.cos\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)\]
\[ = AB.AC.cos\widehat {BAC} = 1.1.\cos 60^\circ = \frac{1}{2}.\]
Do đó \(\overrightarrow {AM} .\overrightarrow {AN} \)\[ = \frac{1}{2}.\left( {2A{C^2} - A{B^2} + \overrightarrow {AB} .\overrightarrow {AC} } \right)\]
\[ = \frac{1}{2}.\left( {{{2.1}^2} - {1^2} + \frac{1}{2}} \right)\]
\( = \frac{1}{2}.\frac{3}{2} = \frac{3}{4}.\)
Vậy \(\overrightarrow {AM} .\overrightarrow {AN} = \frac{3}{4}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247