Cho tam giác ABC có góc A < 90^0. Dựng ra phía ngoài tam giác hai tam giác vuông cân đỉnh A là ABD và ACE. Gọi M, N, P theo thứ tự là trung điểm BC, BD, CE. Chứng minh rằng:BE v

Câu hỏi :

Cho tam giác ABC có \(\widehat A < 90^\circ .\) Dựng ra phía ngoài tam giác hai tam giác vuông cân đỉnh A là ABD và ACE. Gọi M, N, P theo thứ tự là trung điểm BC, BD, CE. Chứng minh rằng:

* Đáp án

* Hướng dẫn giải

Lời giải

Cho tam giác ABC có góc A < 90^0. Dựng ra phía ngoài tam giác hai tam giác vuông cân đỉnh A là ABD và ACE. Gọi M, N, P theo thứ tự là trung điểm BC, BD, CE. Chứng minh rằng:BE v (ảnh 1)

Ta có: \[\overrightarrow {BE} = \overrightarrow {AE} - \overrightarrow {AB} \] và \[\overrightarrow {CD} = \overrightarrow {AD} - \overrightarrow {AC} \]

\( \Rightarrow \overrightarrow {BE} .\overrightarrow {CD} = \left( {\overrightarrow {AE} - \overrightarrow {AB} } \right).\left( {\overrightarrow {AD} - \overrightarrow {AC} } \right)\)

\( = \overrightarrow {AE} .\overrightarrow {AD} - \overrightarrow {AE} .\overrightarrow {AC} - \overrightarrow {AB} .\overrightarrow {AD} + \overrightarrow {AB} .\overrightarrow {AC} \)

\( = \overrightarrow {AE} .\overrightarrow {AD} + \overrightarrow {AB} .\overrightarrow {AC} \) (do \[\overrightarrow {AB} .\overrightarrow {AD} = 0\] và \[\overrightarrow {AC} .\overrightarrow {AE} = 0\])

Ta có:

• \(\overrightarrow {AE} .\overrightarrow {AD} = AE.AD.cos\widehat {DAE}\)

Và \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.cos\widehat {BAC}\)

• AB = AD và AC = AE

• \(\widehat {DAE} = 360^\circ - \widehat {DAB} - \widehat {BAC} - \widehat {CAE}\)

\[ \Rightarrow \widehat {DAE} = 360^\circ - 90^\circ - \widehat {BAC} - 90^\circ \]

\[ \Rightarrow \widehat {DAE} = 180^\circ - \widehat {BAC}\]

\[ \Rightarrow cos\widehat {DAE} = cos\left( {180^\circ - \widehat {BAC}} \right) = - cos\widehat {BAC}\]

\( \Rightarrow \overrightarrow {AE} .\overrightarrow {AD} = - \overrightarrow {AB} .\overrightarrow {AC} \)

\( \Rightarrow \overrightarrow {BE} .\overrightarrow {CD} = \overrightarrow {AE} .\overrightarrow {AD} - \overrightarrow {AB} .\overrightarrow {AC} = 0\)

\( \Rightarrow \overrightarrow {BE} \bot \overrightarrow {CD} \)

BE ⊥ CD.

Copyright © 2021 HOCTAP247