Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1). Tìm toạ độ trực tâm H của tam giác ABC.

Câu hỏi :

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1).

* Đáp án

* Hướng dẫn giải

Lời giải

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1). Tìm toạ độ trực tâm H của tam giác ABC. (ảnh 1)

Vì H là trực tâm của tam giác ABC nên AH ⊥ BC và BH ⊥ AC

Hay \(\overrightarrow {AH} .\overrightarrow {BC} = 0\) và \(\overrightarrow {BH} .\overrightarrow {AC} = 0\)

Giả sử H(x; y) là tọa độ trực tâm tam giác ABC

Với A(–3; 2), B(1; 5), C(3; −1) và H(x; y) ta có:

• \(\overrightarrow {AH} = \left( {x + 3;y - 2} \right)\) và \(\overrightarrow {BC} = \left( {2; - 6} \right)\)

\( \Rightarrow \overrightarrow {AH} .\overrightarrow {BC} = \left( {x + 3} \right).2 + \left( {y - 2} \right).\left( { - 6} \right) = 0\)

2x – 6y = –18

x – 3y = –9(1)

• \(\overrightarrow {BH} = \left( {x - 1;y - 5} \right)\) và \(\overrightarrow {AC} = \left( {6; - 3} \right)\)

\( \Rightarrow \overrightarrow {BH} .\overrightarrow {AC} = \left( {x - 1} \right).6 + \left( {y - 5} \right).\left( { - 3} \right) = 0\)

6x – 3y = –9(2)

Trừ vế theo vế (2) cho (1) ta có:

5x = 0 x = 0

y = 3

H(0; 3)

Vậy tọa độ trực tâm của tam giác ABC là H(0; 3)

Copyright © 2021 HOCTAP247