Tính theo đường chim bay, xác định khoảng cách ngắn nhất để một người ở vị trí có toạ độ (– 3; 4) di chuyển được tới vùng phủ sóng theo đơn vị ki-lô-mét (làm tròn kết quả đến hàng phần mười).
Hướng dẫn giải:
Gọi vị trí người đó đang đứng là B(– 3; 4).
Ta có: \(\overrightarrow {BI} = \left( { - 2 - \left( { - 3} \right);\,1 - 4} \right) = \left( {1;\, - 3} \right)\), \(BI = \sqrt {{1^2} + {{\left( { - 3} \right)}^2}} = \sqrt {10} \).
BI > R nên B nằm ngoài đường tròn ranh giới, giả sử đường thẳng BI cắt đường tròn tại điểm A, khi đó AB là khoảng cách ngắn nhất từ B đến vùng phủ sóng.
Ta cần tìm tọa độ điểm A.
Đường thẳng BI có một vectơ chỉ phương là vectơ \(\overrightarrow {BI} \) nên nó có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3;\,\,1} \right)\). Do đó, phương trình đường thẳng BI là 3(x + 3) + 1(y – 4) = 0 hay 3x + y + 5 = 0.
Tọa độ của giao điểm A là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}3x + y + 5 = 0\\{\left( {x{\rm{ }} + {\rm{ }}2} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}--{\rm{ }}1} \right)^2} = {\rm{ }}9\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}y = - 3x - 5\\{\left( {x + 2} \right)^2} + {\left( { - 3x - 5 - 1} \right)^2} = 9\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}y = - 3x - 5\\{x^2} + 4x + 4 + 9{x^2} + 36x + 36 = 9\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}y = - 3x - 5\\10{x^2} + 40x + 31 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}y = - 3x - 5\\\left[ \begin{array}{l}x = \frac{{ - 20 + 3\sqrt {10} }}{{10}}\\x = \frac{{ - 20 - 3\sqrt {10} }}{{10}}\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = \frac{{ - 20 + 3\sqrt {10} }}{{10}}\\y = \frac{{10 - 9\sqrt {10} }}{{10}}\end{array} \right.\\\left\{ \begin{array}{l}x = \frac{{ - 20 - 3\sqrt {10} }}{{10}}\\y = \frac{{10 + 9\sqrt {10} }}{{10}}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}A\left( {\frac{{ - 20 + 3\sqrt {10} }}{{10}};\,\,\frac{{10 - 9\sqrt {10} }}{{10}}} \right)\\A\left( {\frac{{ - 20 - 3\sqrt {10} }}{{10}};\,\,\frac{{10 + 9\sqrt {10} }}{{10}}} \right)\end{array} \right.\)
+ Với \(A\left( {\frac{{ - 20 + 3\sqrt {10} }}{{10}};\,\,\frac{{10 - 9\sqrt {10} }}{{10}}} \right)\)
Ta có: \(AB = \sqrt {{{\left( { - 3 - \frac{{ - 20 + 3\sqrt {10} }}{{10}}} \right)}^2} + {{\left( {4 - \frac{{10 - 9\sqrt {10} }}{{10}}} \right)}^2}} \approx 6,2\)
+ Với \(A\left( {\frac{{ - 20 - 3\sqrt {10} }}{{10}};\,\,\frac{{10 + 9\sqrt {10} }}{{10}}} \right)\)
Ta có: \(AB = \sqrt {{{\left( { - 3 - \frac{{ - 20 - 3\sqrt {10} }}{{10}}} \right)}^2} + {{\left( {4 - \frac{{10 + 9\sqrt {10} }}{{10}}} \right)}^2}} \approx 0,2\)
Do 0,2 < 6,2 nên ta chọn kết quả 0,2.
Vậy tính theo đường chim bay, khoảng cách ngắn nhất để một người ở vị trí có toạ độ (– 3; 4) di chuyển được tới vùng phủ sóng là 0,2 km.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247