Một tình huống trong huấn luyện pháo binh được mô tả như sau: Trong mặt phẳng tọa độ Oxy (đơn vị trên hai trục tính theo mét), một viên đạn được bắn từ vị trí O(0; 0) theo quỹ đạo...

Câu hỏi :

Một tình huống trong huấn luyện pháo binh được mô tả như sau: Trong mặt phẳng tọa độ Oxy (đơn vị trên hai trục tính theo mét), một viên đạn được bắn từ vị trí O(0; 0) theo quỹ đạo là đường parabol y = \( - \frac{9}{{1\,000\,000}}{x^2} + \frac{3}{{100}}x\). Tìm khoảng cách theo trục hoành của viên đạn so với vị trí bắn khi viên đạn đang ở độ cao hơn 15m (làm tròn kết quả đến hàng phần trăm theo đơn vị mét).

* Đáp án

* Hướng dẫn giải

Lời giải

Viên đạn đang ở độ cao hơn 15m nghĩa là: \( - \frac{9}{{1\,000\,000}}{x^2} + \frac{3}{{100}}x\) > 15

\( \Leftrightarrow - \frac{9}{{1\,000\,000}}{x^2} + \frac{3}{{100}}x - 15 > 0\)

Xét tam thức f(x) = \( - \frac{9}{{1\,000\,000}}{x^2} + \frac{3}{{100}}x - 15\), có a = \( - \frac{9}{{1\,\,000\,\,000}}\) và

∆ = \({\left( {\frac{3}{{100}}} \right)^2} - 4.\left( { - \frac{9}{{1\,\,000\,\,000}}} \right).\left( { - 15} \right) = \frac{9}{{25000}}\) > 0.

Do đó tam thức có hai nghiệm phân biệt x1 ≈ 2 720,76 và x2 ≈ 612,57.

Áp dụng định lí về dấu ta có: f(x) > 0 hay \( - \frac{9}{{1\,000\,000}}{x^2} + \frac{3}{{100}}x > 15\) khi x (612,57; 2 720,76).

Vậy khi viên đạn đang ở độ cao hơn 15m thì có khoảng cách đến vị trí bắn trong khoảng 612,57 m đến 2 720,76 m.

Copyright © 2021 HOCTAP247