Giải thích vì sao chỉ cần kiểm tra nghiệm của phương trình f(x) = [g(x)]2 thỏa mãn bất phương trình g(x) ≥ 0 mà không cần kiểm tra thỏa mãn bất phương trình f(x) ≥ 0 để kết luận ng...

Câu hỏi :

Giải thích vì sao chỉ cần kiểm tra nghiệm của phương trình f(x) = [g(x)]2 thỏa mãn bất phương trình g(x) ≥ 0 mà không cần kiểm tra thỏa mãn bất phương trình f(x) ≥ 0 để kết luận nghiệm của phương trình \(\sqrt {f(x)} = g(x)\).

* Đáp án

* Hướng dẫn giải

Lời giải

Xét \(\sqrt {f(x)} = g(x)\) (**)

Điều kiện của phương trình gồm:

+) Điều kiện tồn tại của căn thức là f(x) ≥ 0

+) Vì \(\sqrt {f(x)} \) ≥ 0 nên g(x) ≥ 0.

Bình phương 2 vế của phương trình (**) là: f(x) = [g(x)]2 ≥ 0

Do đó trong hai điều kiện ta chỉ cần g(x) ≥ 0.

Copyright © 2021 HOCTAP247