Tìm khoảng đồng biến, nghịch biến của các hàm số sau: f( x ) = 1/ - x - 5

Câu hỏi :

Tìm khoảng đồng biến, nghịch biến của các hàm số sau:

\(f\left( x \right) = \frac{1}{{ - x - 5}}\);

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Tập xác định của hàm số là: D = ℝ \ {– 5}.

+ Xét khoảng (– ∞; – 5):

Lấy hai số x1, x2 tùy ý thuộc (– ∞; – 5) sao cho x1 < x2.

Ta có: \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{ - {x_1} - 5}} - \frac{1}{{ - {x_2} - 5}}\)\( = \frac{{ - {x_2} - 5 - \left( { - {x_1} - 5} \right)}}{{\left( { - {x_1} - 5} \right)\left( { - {x_2} - 5} \right)}}\)\( = \frac{{{x_1} - {x_2}}}{{\left( {{x_1} + 5} \right)\left( {{x_2} + 5} \right)}}\).

Vì x1, x2 (– ∞; – 5) nên x1 + 5 < 0 và x2 + 5 < 0.

Lại có: x1 < x2 nên x1 – x2 < 0.

Do đó, f(x1) – f(x2) \( = \frac{{{x_1} - {x_2}}}{{\left( {{x_1} + 5} \right)\left( {{x_2} + 5} \right)}}\) < 0 hay f(x1) < f(x2).

Vậy hàm số đồng biến trên khoảng (– ∞; – 5). (1)

+ Xét khoảng (– 5; + ∞):

Lấy hai số x3, x4 tùy ý thuộc (– 5; + ∞) sao cho x3 < x4.

Ta có: \(f\left( {{x_3}} \right) - f\left( {{x_4}} \right) = \frac{1}{{ - {x_3} - 5}} - \frac{1}{{ - {x_4} - 5}}\)\( = \frac{{ - {x_4} - 5 - \left( { - {x_3} - 5} \right)}}{{\left( { - {x_3} - 5} \right)\left( { - {x_4} - 5} \right)}}\)\( = \frac{{{x_3} - {x_4}}}{{\left( {{x_3} + 5} \right)\left( {{x_4} + 5} \right)}}\).

Vì x3, x4 (– 5; + ∞) nên x3 + 5 > 0 và x4 + 5 > 0.

Lại có: x3 < x4 nên x3 – x4 < 0.

Do đó, f(x3) – f(x4) \( = \frac{{{x_3} - {x_4}}}{{\left( {{x_3} + 5} \right)\left( {{x_4} + 5} \right)}}\) < 0 hay f(x1) < f(x2).

Vậy hàm số đồng biến trên khoảng (– 5; + ∞). (2)

Từ (1) và (2) suy ra hàm số đã cho đồng biến trên các khoảng (– ∞; – 5) và (– 5; + ∞).

Copyright © 2021 HOCTAP247