Tập giá trị của hàm số y = f(x) = – 2x2 + \(\sqrt 2 \)x + 1 là
A. T = \(\left( { - \frac{5}{4}; + \infty } \right)\);
B. T = \(\left[ { - \frac{5}{4}; + \infty } \right)\);
C. T = \(\left( { - \infty ;\frac{5}{4}} \right)\);
D. T = \(\left( { - \infty ;\,\frac{5}{4}} \right]\).
Hướng dẫn giải
Đáp án đúng là: D
Do hàm số y = f(x) = – 2x2 + \(\sqrt 2 \)x + 1 là hàm số bậc hai nên đồ thị hàm số này là parabol có tọa độ đỉnh S là
xS = \( - \frac{b}{{2a}}\) \( = - \frac{{\sqrt 2 }}{{2.\left( { - 2} \right)}}\) = \(\frac{{\sqrt 2 }}{4}\), yS = \( - 2.{\left( {\frac{{\sqrt 2 }}{4}} \right)^2} + \sqrt 2 .\frac{{\sqrt 2 }}{4} + 1 = \frac{5}{4}\) hay S\(\left( {\frac{{\sqrt 2 }}{4};\,\frac{5}{4}} \right)\).
Lại có hàm số có hệ số a = – 2 < 0 nên bề lõm của parabol hướng xuống dưới, do đó đỉnh S là điểm cao nhất của đồ thị hàm số.
Vậy tập giá trị của hàm số đã cho là: T = \(\left( { - \infty ;\frac{5}{4}} \right)\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247