Số đo các góc B, C;
Lời giải
Xét tam giác ABC, có:
\(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2.AB.BC}} = \frac{{{{6,5}^2} + {{13,3}^2} - {{8,5}^2}}}{{2.6,5.13,3}} \approx 0,8\)
⇒ \(\widehat B \approx 31,8^\circ \)
Ta lại có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc)
⇒ \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) \approx 180^\circ - \left( {125^\circ + 31,8^\circ } \right) = 23,2^\circ \).
Vậy \(\widehat B \approx 31,8^\circ \) và \(\widehat C \approx 23,2^\circ \).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247